ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity
نویسندگان
چکیده
Recognition of pathogens by host plants leads to rapid transcriptional reprogramming and activation of defence responses. The expression of many defence regulators is induced in this process, but the mechanisms of how they are controlled transcriptionally are largely unknown. Here we use chromatin immunoprecipitation sequencing to show that the transcription factors SARD1 and CBP60g bind to the promoter regions of a large number of genes encoding key regulators of plant immunity. Among them are positive regulators of systemic immunity and signalling components for effector-triggered immunity and PAMP-triggered immunity, which is consistent with the critical roles of SARD1 and CBP60g in these processes. In addition, SARD1 and CBP60g target a number of genes encoding negative regulators of plant immunity, suggesting that they are also involved in negative feedback regulation of defence responses. Based on these findings we propose that SARD1 and CBP60g function as master regulators of plant immune responses.
منابع مشابه
The CALMODULIN-BINDING PROTEIN60 family includes both negative and positive regulators of plant immunity.
Two members of the eight-member CALMODULIN-BINDING PROTEIN60 (CBP60) gene family, CBP60g and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1 (SARD1), encode positive regulators of plant immunity that promote the production of salicylic acid (SA) and affect the expression of SA-dependent and SA-independent defense genes. Here, we investigated the other six family members in Arabidopsis (Arabidopsis thal...
متن کاملControl of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors.
Salicylic acid (SA) is a defense hormone required for both local and systemic acquired resistance (SAR) in plants. Pathogen infections induce SA synthesis through up-regulating the expression of Isochorismate Synthase 1 (ICS1), which encodes a key enzyme in SA production. Here we report that both SAR Deficient 1 (SARD1) and CBP60g are key regulators for ICS1 induction and SA synthesis. Whereas ...
متن کاملGenome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize.
Opaque2 (O2) is a transcription factor that plays important roles during maize endosperm development. Mutation of the O2 gene improves the nutritional value of maize seeds but also confers pleiotropic effects that result in reduced agronomic quality. To reveal the transcriptional regulatory framework of O2, we studied the transcriptome of o2 mutants using RNA sequencing (RNA-Seq) and determined...
متن کاملPhysiological and Pathological Roles for MicroRNAs: Implications for Immunity Complications
MicroRNAs (miRNAs) are small non-coding regulatory RNAs molecules with a size of approximately 22 nucleotides that are implicated in regulating gene expression at the post-transcriptional regulatory levels. Inflammatory disorders especially autoimmune diseases (ADs) occur from an abnormal immune response of body against cells of their own specific tissues or multiple organ systems leading to ch...
متن کاملArabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae
Salicylic acid (SA)-induced defense responses are important factors during effector triggered immunity and microbe-associated molecular pattern (MAMP)-induced immunity in plants. This article presents evidence that a member of the Arabidopsis CBP60 gene family, CBP60g, contributes to MAMP-triggered SA accumulation. CBP60g is inducible by both pathogen and MAMP treatments. Pseudomonas syringae g...
متن کامل